
Enlarged Krylov methods and 2-level
preconditioner for the map-making
problem in CMB data analysis

Modelling 2019 - Olomouc

Laura Grigori, Thibault Cimic
December 4, 2019

Laboratoire INRIA - Equipe ALPINES

1



The Cosmic Microwave
Background and MM problem



The Cosmic Microwave Background

CMB : Cosmic Microwave Background

Cosmic : come from far away, outside our galaxy
Microwave : photons as observed today, they lost energy
therefore increase wavelengths
Background : emitted the same way in every direction from
anywhere, nearly isotropic and uniform

Other names ?

Relic radiation → First photons that started to travel in the
very early hot and dense universe (379,000 years old out of
13.8 billions)

The goal : Reconstruct a map of temperature and polarisation
of these early photons
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The Cosmic Microwave Background

Figure 1: Evolution of the CMB map of temperature 3



The Cosmic Microwave Background

Figure 2: Map of temperature reconstructed from nine years of
WMAP data satellite (2003-2012)
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The Cosmic Microwave Background

Figure 3: Map of temperature with Planck satellite
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The map-making problem
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The Map-making problem

Writting the vector of measurement d ∈ Rnt as :

d = Ps + n

• s ∈ Rnp is the signal
• P ∈ Rnt×np is the pointing matrix, tall and skinny and

very sparse
• n ∈ Rnt is the noise, modelled as a Gaussian stochastic

process

Maximum likelihood estimate, ŝ, of the signal s given by :(
P tN−1P

)︸ ︷︷ ︸
A

ŝ = P tN−1d

Where N ∈ Rnt×nt is the covariance matrix of the noise.
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The Map-making problem

Map-making : scanning strategy & maximum likelihood

What’s a scanning strategy ?

The way we observe the sky, encoded by the pointing matrix P

as such :
A line numbered 1 ≤ i ≤ nt of P , Pi ,. ∈ Rnp , says what pixels
we look at time i

Pi ,. = (0, ..., 0, ti , 0, ..., 0) (1)

Particular case : when polarization added, pixel domain*3 and
lines of P ∈ Rnt×3np became :

Pi ,. = (0, ..., 0, ti , qi , ui , 0, ..., 0) (2)
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The Map-making problem

What does N−1 looks like ?

N−1 is a block diagonal matrix, many blocks, and each block
is band-diagonal, toeplitz and symetric.

Let’s call :

• nblc : number of blocks
• N−1

l for 1 ≤ l ≤ nblc the blocks of N−1

• dl the diagonal coefficient of block l , and e lk for
2 ≤ k ≤ λl the off-diagonal coef. of block l , λl being the
band width

N−1 looks like :
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N−1 =


N−1

1 0 · · · 0
0 N−1

2 · · · 0
...

... . . . ...
0 0 · · · N−1

nblc



with block like this :

N−1
l =



dl e l2 · · · e lλl 0 · · · 0
. . . . . . . . . . . . ...

. . . . . . . . . 0
dl e l2 e lλl

> . . . . . . ...
. . . e l2

dl


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From CG to Enlarged-CG



The Enlarged-CG

Define Tt , for t ∈ N the splitting parameter :

Tt :
Rn → Rn×t

x 7→ Tt(x)
(3)

with Tt(x) s.t. Tt(x) ∗ 1t = x and Tt(x) has t linearly
independent columns.

x =



∗
∗
...
∗
∗
∗


7→ Tt(x) =


∗ 0

∗ ...
0 . . . ∗
...

...
0 ∗


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The Enlarged-CG

A ∈ Rn×n SPD, b ∈ Rn, solve Ax = b

Enlarged the Krylov space with Tt :

Kk,t = Span�
(
Tt(r0),ATt(r0), ...,Ak−1Tt(r0)

)
For x0 ∈ Rn×t , build the sequence (xk)k≥0 s.t. :{

xk+1 ∈ x0 + Kk,t

rk+1 = b − Axk ⊥ Kk,t

(4)

Lemma
For xk the k-th approximation build from (4), xk+1 satisfies :

Kk ⊂ Kk,t

||xk+1 − x ||A = min
x∈x0+Kk,t

||x − x ||A

12
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Theorem (O. Tissot, L. Grigori)
Let xk be the k-th iterate build with (10), then we have :

||xk − x ||A ≤ C

(√
κt − 1
√
κt + 1

)k

(5)

with κt = λn/λt where λt is the tth smallest eigenvalue of A
and C is a constant independent of k .

13



Algorithm 1 Enlarged CG
Require: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn, kmax ∈ N, ε > 0, t ∈ N
Ensure: ||b − Axk ||2 < ε||b||2 or k = kmax

k = 0, p0 = r0 = b − Ax0

X0 = Tt(x0), P0 = Tt(p0), R0 = Tt(r0)

while ||rk+1|| > ε||b|| ou k < kmax do
A-orthonormalize Pk

αk = P t
kRk

Xk+1 = Xk + Pkαk

Rk+1 = Rk − APkαk

rk+1 = Rk+11t

Pk+1 = Rk+1 − PkP
>
k ARk+1

k = k + 1
end while
Return xk+1 = Xk+1 ∗ 1t

13



A few numerical results
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2-level preconditioner from
fictitious space lemma



The fictitious space lemma

Lemma
(H , (., .)), (HD , (., .)D) two Hilbert spaces, two symmetric
positive bilinear forms a : H × H −→ R, b : HD × HD −→ R,
generated by the SPD operators A : H −→ H and
B : HD −→ HD , respectively. Suppose that there exists a
linear operator R : HD −→ H such that the following holds :

• R is surjective.

• ∃cU s.t. ∀uD ∈ HD , a(RuD ,RuD) ≤ cUb(uD , uD)

• ∃cL s.t. ∀u ∈ H , ∃uD ∈ HD s.t. RuD = u,
cLb(uD , uD) ≤ a(RuD ,RuD) = a(u, u)

R∗ : H −→ HD the adjoint operator of R, then :

Λ
(
RB−1R∗A

)
⊂ [cL, cU ]

17



The fictitious space lemma

• nblc blocks of N−1 splits {1, ..., nt} in nblc domains :

Rnt ∼=
nblc∪
l=0

Rnl =: HD

P> = (P>1 |...|P>nblc ) and P>N−1P =
∑nblc

l=1 P
>
l N

−1
l Pl

• Define :

R :
HD −→ H

(ul)l=0...N 7→
∑N

l=0 P
>
l ul

then :

R∗ :
H −→ HD

u 7→ (Piu)i=0...N

Lemma (Surjectivity of R)
R define as such is surjective.
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The fictitious space lemma

• Define operators a and b :

a :
H × H −→ R

(u, v) 7→ a(u, v) := u>Av

b :
HD × HD −→ R

(U ,V) 7→ b(U ,V) := U>BV

B(U) :=
(
P>0 AP0u0, diag(N−1

1 )u1, ..., diag(N−1
nblc

)unblc
)

B−1(U) :=(
(P>0 AP0)−1u0, diag(N−1

1 )−1u1, ..., diag(N−1
nblc

)−1unblc
)

• Set the preconditioner M−1
2 :

M−1
2 = RB−1R∗ = P0(P>0 MP0)−1P>0 + P>diag(N−1)−1P

19
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The fictitious space lemma

Lemma (Continuity of R)
As such : ∃cU s.t. ∀uD ∈ HD , a(RuD ,RuD) ≤ cUb(uD , uD)

This result uses :

• for all uD ∈ HD :

u>DN
−1uD ≤ Ku>Ddiag(N−1)uD

20
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The fictitious space lemma

Coarse space correction :

• GenEO preconditioner : Neumann matrices Ãj , uses PDE
setting

N∑
i=1

(RjU)>ÃjRjU ≤ k1U
>AU

• ALS preconditioner : ALS of matrix A, Ãj , uses operator
R of DD

N∑
i=1

U>ÃjU ≤ kmU
>AU

21
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The fictitious space lemma

In map-making : P>N−1P =
∑nblc

i=1 P
>
i N

−1
i Pi

u>P>i N
−1
i Piu ≤ u>P>N−1Pu

Ongoing/future work :

• Describe the uD s.t. RuD = u for a given u ∈ H

• Build a coarse space that will give stable decomposition
property using generalized eigenvalue problem build in a
similar way as DD or ALS.

• Implement those two methods on highly parallel architure.

22



The fictitious space lemma

In map-making : P>N−1P =
∑nblc

i=1 P
>
i N

−1
i Pi

u>P>i N
−1
i Piu ≤ u>P>N−1Pu

Ongoing/future work :

• Describe the uD s.t. RuD = u for a given u ∈ H

• Build a coarse space that will give stable decomposition
property using generalized eigenvalue problem build in a
similar way as DD or ALS.

• Implement those two methods on highly parallel architure.

22



The fictitious space lemma

In map-making : P>N−1P =
∑nblc

i=1 P
>
i N

−1
i Pi

u>P>i N
−1
i Piu ≤ u>P>N−1Pu

Ongoing/future work :

• Describe the uD s.t. RuD = u for a given u ∈ H

• Build a coarse space that will give stable decomposition
property using generalized eigenvalue problem build in a
similar way as DD or ALS.

• Implement those two methods on highly parallel architure.

22



The fictitious space lemma

In map-making : P>N−1P =
∑nblc

i=1 P
>
i N

−1
i Pi

u>P>i N
−1
i Piu ≤ u>P>N−1Pu

Ongoing/future work :

• Describe the uD s.t. RuD = u for a given u ∈ H

• Build a coarse space that will give stable decomposition
property using generalized eigenvalue problem build in a
similar way as DD or ALS.

• Implement those two methods on highly parallel architure.

22



The fictitious space lemma

In map-making : P>N−1P =
∑nblc

i=1 P
>
i N

−1
i Pi

u>P>i N
−1
i Piu ≤ u>P>N−1Pu

Ongoing/future work :

• Describe the uD s.t. RuD = u for a given u ∈ H

• Build a coarse space that will give stable decomposition
property using generalized eigenvalue problem build in a
similar way as DD or ALS.

• Implement those two methods on highly parallel architure.

22



References

(1) L. Grigori, S. Moufawad, F. Nataf : Enlarged Krylov
subspace conjugate gradient methods for reducing
communication, SIAM Journal on Matrix Analysis and
Applications, 2016

(2) L. Grigori, O. Tissot : Scalable Linear Solvers based on
Enlarged Krylov subspaces with Dynamic Reduction of
Search Directions, Research Rapport RR-9190, 2018

(3) L. Grigori, H. Al Daas : A class of efficient locally
constructed preconditioners based on coarse spaces, SIAM
Journal on Matrix Analysis and Applications, 2019

(4) V. Dolean, P. Jolivet, F. Nataf : An introduction to
domain decomposition methods, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2015

23



Thank you for you attention !

24


	The Cosmic Microwave Background and MM problem
	Introduction
	The Map-making problem

	From CG to Enlarged-CG
	Introduction
	Some numerical results

	2-level preconditioner from fictitious space lemma
	The fictitious space lemma
	Map-making problem in the fictitious space lemma


