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Introduction

Studies of the Cosmic Microwave Background (CMB)
anisotropies have been driving the progress in our un-
derstanding of the Universe for nearly 25 years. The cur-
rent and forthcoming CMB observatories are expected
to deliver unprecedented insights about the Universe’s
beginning and evolution, producing enormous data sets,
(O(1015)) and thus calling for advanced, high performance
data analysis techniques.

Map-making problem

Settings:
• number of pixels np ∼ O(106)
• number of measurements nt ∼ O(1015)
•P ∈ Rnt×3np, N−1 ∈ Rnt×nt, mML ∈ R3np, d ∈ Rnt

d︸︷︷︸
observed data

= P︸︷︷︸
pointing matrix

· m︸︷︷︸
unknown map

+ n︸︷︷︸
noise

⇒ (P TN−1P )mML = P TN−1d (1)
A few comments:
• noise is very large, its inverse covariance matrix is
known a priori and it is of special form
• the system matrix cannot be formed but we can
perform matrix-vector product with it
• the application of matrix-vector product involves
FFTs and it is very time-costly

Techniques

The state-of-the-art solver is Preconditioned Conju-
gate Gradient (PCG) (O(100) iterations) with:
• one-level preconditioner [4]

block-diagonal prec.: P tdiag(N−1)P
• two-level preconditioner [2]

block-diagonal prec. + deflation of "smooth"
eigenvectors

The techniques under study:

•Enlarged Conjugate Gradient (ECG)
•Two-level GenEO preconditioner from Domain
Decomposition methods
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Figure 1:A visualization of the polarization of CMB as detected by ESA’s Planck satellite over the entire sky, www.jpl.nasa.gov.

Enlarged conjugate gradient

Enlarged Krylov techniques are projection methods on
a Krylov subspace enlarged by a parameter t ∈ N to
solve linear systems: Ax = b. By initially splitting the
residual r0 into t linearly independant vectors, a set of t
new vectors is added to the enlarged Krylov sudbspace,
Kk,t(A, r0), at each iteration k. The k-th ECG approxi-
mation then satisfies:

||xk − x||A = min
x∈x0+Kk−1,t

||x− x||A (2)

Kk−1 ⊂ Kk−1,t (3)
As a result, a new convergence rate can be established:

||xk − x||A ≤ 2||ê0||A

√κt − 1
√
κt + 1

k

(4)

with κt = λn/λt and ê0 := E0(φt1E0)−1, where φ1 denotes
the t eigenvectors associated to the t smallest eigenvalues:
λ1 ≤ ... ≤ λt, and E0 is the initial enlarged error.
This results in a trade-off between the decrease of the
number of iteration needed to reach a certain threshold
and the increase of the cost of each iteration, illustrated
in [3]:

Figure 2:Queen: structural problem matrix, Ela_4: Linear Elasticity
matrix - left y-axis is the total runtimes (columns), right y-axis is the
iteration number (dots), x-axis is the number of MPI processes

GenEO preconditioner

In domain decomposition, a two-level precondition-
ner is build from the classical Additive Schwartz (AS)
one-level preconditionner by adding a coarse space
correction. This typically makes use of an underlying
setting from a PDE, such as with Generalized Eigen-
value in the Overlap (GenEO) preconditioner.
In [1], the authors describe a fully algebraic two-level
domain decomposition preconditionner, by defining
an algebraic local SPSD splitting (ALS), Ãi, of a ma-
trix A w.r.t. a subdomain i = 1, ..., N :

PiÃiP ti =


Ri,0ARt

i,0 Ri,0ARt
i,δ

Ri,δARt
i,0 Ãδ

0

 (5)

s.t. ∀u ∈ Rn,
0 ≤ utÃiu ≤ utAu (6)

Then a coarse space is build by solving generalized
eigenvalues problem on each subdomains i with Ãi.
Numerical results are shown in Table 1.
In our problem (1), not originating from a PDE set-
ting, we would like to build a coarse space accounting
for the smallests eigenvalues of the operator. For that,
we can make use of a similar splitting:

P tN−1P =
nblc∑
i=1
P t
iN
−1
i Pi (7)

which is an SPSD splitting of the matrix but not nec-
essarily local, neither in the time domain, nor in the
pixel domain. Therefore the generalized eigenvalue
problems considered in [1] cannot be derived from
this splitting, and new ones must be considered.

Numerical results

We first show some results on the ECG applied to the map-making
problem:

Figure 3:Two different map-making test cases solved with ECG and block-diagonal
preconditioner

And numerical results from [1] with an 3D elasticity problem:
N dimuC nuC dimα1 nα1 dimα2 nα2 dimGen nGen
4 82 20 92 19 120 18 106 20
8 179 23 209 20 240 20 229 24
16 304 37 394 30 480 28 391 38
32 447 53 583 45 960 36 614 42
64 622 84 769 73 1920 51 850 55
128 969 131 1096 114 3834 77 1326 61

Table 1:Dimension of the coarse (dim), and the iteration counts (n) for various
two-level preconditioners and varying number of subdomains N . Best ALS pre-
conditioner (uC), GenEO precondtioner (Gen), and convex combinations of ALS
preconditioners (α1, α2).

On-going work

•Fully understanding of the trade-off between the number of
iteration and the splitting parameter t in enlarged projection
methods.
•Building a fully algebraic domain-decomposition-like two-level
preconditionner for the map-making problem.
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