Map-making problem for CMB data analysis

Thibault Cimic

Laboratoire INRIA - Equipe ALPINES

September 16, 2019

3.5

Introduction to the astrophysic problem

- What's the CMB ?
- Why is it hard ?
- What's map-making ?
- 2 Enlarged Conjugate Gradient (CG)
 - A few reminders on CG
 - Enlarged CG
- 3 Numerical results
- What are the next steps ?

Enlarged Conjugate Gradient (CG) Numerical results What are the next steps ? What's the CMB ? Why is it hard ? What's map-making ?

What is CMB ?

Thibault Cimic Map-making problem for CMB data analysis

(日)

Enlarged Conjugate Gradient (CG) Numerical results What are the next steps ? What's the CMB ? Why is it hard ? What's map-making ?

CMB : Cosmic Microwave Background

(日)

Enlarged Conjugate Gradient (CG) Numerical results What are the next steps ? What's the CMB ? Why is it hard ? What's map-making ?

CMB : Cosmic Microwave Background

Other names ?

(日)

Enlarged Conjugate Gradient (CG) Numerical results What are the next steps ? What's the CMB ? Why is it hard ? What's map-making ?

CMB : Cosmic Microwave Background

Other names ?

Relic radiation

- 4 同 6 4 日 6 4 日 6

Enlarged Conjugate Gradient (CG) Numerical results What are the next steps ? What's the CMB ? Why is it hard ? What's map-making ?

CMB : Cosmic Microwave Background

Other names ?

Relic radiation \rightarrow First photons that started to travel in the very early hot and dense universe (379,000 years old out of 13.8 billions)

A (1) < (1) < (1) </p>

What's the CMB ? Why is it hard ? What's map-making ?

CMB : Cosmic Microwave Background Cosmic : come from far away, outside our galaxy

Other names ?

Relic radiation \rightarrow First photons that started to travel in the very early hot and dense universe (379,000 years old out of 13.8 billions)

・ 同 ト ・ ヨ ト ・ ヨ

What's the CMB ? Why is it hard ? What's map-making ?

CMB : Cosmic Microwave Background Cosmic : come from far away, outside our galaxy Microwave : photons as observed today, they lost energy therefore increase wavelengths

Other names ?

Relic radiation \rightarrow First photons that started to travel in the very early hot and dense universe (379,000 years old out of 13.8 billions)

・ 同 ト ・ ヨ ト ・ ヨ

What's the CMB ? Why is it hard ? What's map-making ?

CMB : Cosmic Microwave Background Cosmic : come from far away, outside our galaxy Microwave : photons as observed today, they lost energy therefore increase wavelengths Background : emitted the same way in every direction from anywhere, nearly isotropic and uniform

Other names ?

Relic radiation \rightarrow First photons that started to travel in the very early hot and dense universe (379,000 years old out of 13.8 billions)

(4月) (3日) (3日)

What's the CMB ? Why is it hard ? What's map-making ?

CMB : Cosmic Microwave Background Cosmic : come from far away, outside our galaxy Microwave : photons as observed today, they lost energy therefore increase wavelengths Background : emitted the same way in every direction from anywhere, nearly isotropic and uniform

Other names ?

Relic radiation \rightarrow First photons that started to travel in the very early hot and dense universe (379,000 years old out of 13.8 billions)

The goal : Reconstruct a 2D image of "the birth of the Universe" (when it has 0.004% of the current age), i.e. a map of temperature and polarisation of these early photons

伺 ト イヨト イヨト

Enlarged Conjugate Gradient (CG) Numerical results What are the next steps ? What's the CMB ? Why is it hard ? What's map-making ?

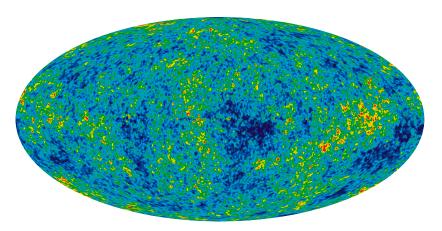


Figure: Map of temperature reconstructed from nine years of WMAP data satellite (2003-2012)

・ 同 ト ・ ヨ ト ・ ヨ

Enlarged Conjugate Gradient (CG) Numerical results What are the next steps ? What's the CMB ? Why is it hard ? What's map-making ?

Why is it hard ?

Thibault Cimic Map-making problem for CMB data analysis

(日)

What's the CMB ? Why is it hard ? What's map-making ?

• Tiny signal as compared with the noise of our instruments and other signals from Earth, Solar System, Galaxy, which need to be accounted for

< 同 > < 三 >

What's the CMB ? Why is it hard ? What's map-making ?

• Tiny signal as compared with the noise of our instruments and other signals from Earth, Solar System, Galaxy, which need to be accounted for

Resulting Strategy :

3 N

A 10

What's the CMB ? Why is it hard ? What's map-making ?

• Tiny signal as compared with the noise of our instruments and other signals from Earth, Solar System, Galaxy, which need to be accounted for

Resulting Strategy :

0 scan the sky with many detectors over the period of many years \rightarrow lot of measurement

4 周 ト 4 ヨ ト 4 ヨ

What's the CMB ? Why is it hard ? What's map-making ?

• Tiny signal as compared with the noise of our instruments and other signals from Earth, Solar System, Galaxy, which need to be accounted for

Resulting Strategy :

- (a) scan the sky with many detectors over the period of many years \rightarrow lot of measurement
- 2 account for the noise \rightarrow with statistical tools

4 周 ト 4 ヨ ト 4 ヨ

What's the CMB ? Why is it hard ? What's map-making ?

• Tiny signal as compared with the noise of our instruments and other signals from Earth, Solar System, Galaxy, which need to be accounted for

Resulting Strategy :

- (a) scan the sky with many detectors over the period of many years \rightarrow lot of measurement
- 2 account for the noise \rightarrow with statistical tools
- S compress the data onto the map

4 周 ト 4 ヨ ト 4 ヨ

What's the CMB ? Why is it hard ? What's map-making ?

• Tiny signal as compared with the noise of our instruments and other signals from Earth, Solar System, Galaxy, which need to be accounted for

Resulting Strategy :

- (a) scan the sky with many detectors over the period of many years \rightarrow lot of measurement
- 2 account for the noise \rightarrow with statistical tools
- S compress the data onto the map

Domain of time measurement : $n_t \approx O(10^{12-15})$ (following Moore's law) Domain of the pixels : $n_p \approx O(10^{6+})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Enlarged Conjugate Gradient (CG) Numerical results What are the next steps ? What's the CMB ? Why is it hard ? What's map-making ?

What is map-making ?

Thibault Cimic Map-making problem for CMB data analysis

What's the CMB ? Why is it hard ? What's map-making ?

Writting the vector of measurement $d \in \mathbb{R}^{n_t}$ as :

$$d = Ps + n \tag{1}$$

Where :

(日)

What's the CMB ? Why is it hard ? What's map-making ?

Writting the vector of measurement $d \in \mathbb{R}^{n_t}$ as :

$$d = Ps + n \tag{1}$$

Where :

• $s \in \mathbb{R}^{n_p}$ is the signal

・ 同 ト ・ ヨ ト ・ ヨ ト

What's the CMB ? Why is it hard ? What's map-making ?

Writting the vector of measurement $d \in \mathbb{R}^{n_t}$ as :

$$d = Ps + n \tag{1}$$

Where :

- $s \in \mathbb{R}^{n_p}$ is the signal
- $P \in \mathbb{R}^{n_t \times n_p}$ is the pointing matrix, tall and skinny and very sparse

・ 同 ト ・ ヨ ト ・ ヨ ト

What's the CMB ? Why is it hard ? What's map-making ?

Writting the vector of measurement $d \in \mathbb{R}^{n_t}$ as :

$$d = Ps + n \tag{1}$$

Where :

- $s \in \mathbb{R}^{n_p}$ is the signal
- $P \in \mathbb{R}^{n_t \times n_p}$ is the pointing matrix, tall and skinny and very sparse
- $n \in \mathbb{R}^{n_t}$ is the noise, modelled as a Gaussian stochastic process

- 4 同 6 4 日 6 4 日 6

What's the CMB ? Why is it hard ? What's map-making ?

Writting the vector of measurement $d \in \mathbb{R}^{n_t}$ as :

$$d = Ps + n \tag{1}$$

Where :

- $s \in \mathbb{R}^{n_p}$ is the signal
- $P \in \mathbb{R}^{n_t \times n_p}$ is the pointing matrix, tall and skinny and very sparse
- $n \in \mathbb{R}^{n_t}$ is the noise, modelled as a Gaussian stochastic process

Build the maximum likelihood estimate, \hat{s} , of the signal s given by :

(4 同) (1 回) (4 回)

What's the CMB ? Why is it hard ? What's map-making ?

Writting the vector of measurement $d \in \mathbb{R}^{n_t}$ as :

$$d = Ps + n \tag{1}$$

Where :

- $s \in \mathbb{R}^{n_p}$ is the signal
- $P \in \mathbb{R}^{n_t imes n_p}$ is the pointing matrix, tall and skinny and very sparse
- $n \in \mathbb{R}^{n_t}$ is the noise, modelled as a Gaussian stochastic process

Build the maximum likelihood estimate, \hat{s} , of the signal s given by :

$$\hat{s} = (P^t N^{-1} P)^{-1} P^t N^{-1} d$$
 (2)

Where $N \in \mathbb{R}^{n_t \times n_t}$ is the covariance matrix of the noise. \mathbf{R}

What's the CMB ? Why is it hard ? What's map-making ?

Map-making : scanning strategy & maximum likelihood

What's a scanning strategy ?

・ 同 ト ・ ヨ ト ・ ヨ ト

Map-making : scanning strategy & maximum likelihood

What's a scanning strategy ?

The way we observe the sky, encoded by the pointing matrix ${\it P}$ as such :

A line numbered $1 \le i \le n_t$ of P, $P_{i,.} \in \mathbb{R}^{n_p}$, says what pixels we look at time i

$$P_{i,.} = (0, ..., 0, t_i, 0, ..., 0)$$
(3)

伺下 イヨト イヨト

Map-making : scanning strategy & maximum likelihood

What's a scanning strategy ?

The way we observe the sky, encoded by the pointing matrix $\ensuremath{\textit{P}}$ as such :

A line numbered $1 \le i \le n_t$ of P, $P_{i,.} \in \mathbb{R}^{n_p}$, says what pixels we look at time i

$$P_{i,.} = (0, ..., 0, t_i, 0, ..., 0)$$
(3)

Particular case : when polarization added, pixel domain*3 and lines of $P \in \mathbb{R}^{n_t \times 3n_p}$ became :

$$P_{i,.} = (0, ..., 0, t_i, q_i, u_i, 0, ..., 0)$$
(4)

・ 同 ト ・ ヨ ト ・ ヨ ト

Enlarged Conjugate Gradient (CG) Numerical results What are the next steps ? What's the CMB ? Why is it hard ? What's map-making ?

What does N^{-1} looks like ?

イロト イボト イヨト イヨト

What's the CMB ? Why is it hard ? What's map-making ?

What does N^{-1} looks like ?

 N^{-1} is a block diagonal matrix

(日)

What's the CMB ? Why is it hard ? What's map-making ?

What does N^{-1} looks like ?

 N^{-1} is a block diagonal matrix , many blocks per detector (i.e. many blocks)

- 4 同 6 4 日 6 4 日 6

What's the CMB ? Why is it hard ? What's map-making ?

What does N^{-1} looks like ?

 N^{-1} is a block diagonal matrix , many blocks per detector (i.e. many blocks) , and each block is band-diagonal, toeplitz and symetric.

・ 同 ト ・ ヨ ト ・ ヨ ト

What's the CMB ? Why is it hard ? What's map-making ?

What does N^{-1} looks like ?

 N^{-1} is a block diagonal matrix , many blocks per detector (i.e. many blocks) , and each block is band-diagonal, to eplitz and symetric.

Let's call :

- *n_{det}* : number of detector
- N_l^{-1} for $1 \leq l \leq n_{det}$ the blocks of N^{-1}
- d_l the diagonal coefficient of block l, and e^l_k for 2 ≤ k ≤ λ_l the off-diagonal coef. of block l, λ_l being the band width

A (1) < A (2) < A (2) </p>

What's the CMB ? Why is it hard ? What's map-making ?

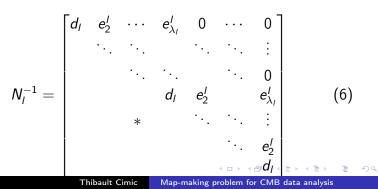
What does N^{-1} looks like ?

 N^{-1} is a block diagonal matrix , many blocks per detector (i.e. many blocks) , and each block is band-diagonal, to eplitz and symetric.

Let's call :

- *n_{det}* : number of detector
- N_l^{-1} for $1 \leq l \leq n_{det}$ the blocks of N^{-1}
- d_l the diagonal coefficient of block *l*, and e^l_k for 2 ≤ k ≤ λ_l the off-diagonal coef. of block *l*, λ_l being the band width

 N^{-1} looks like :


(4月) (3日) (3日)

Enlarged Conjugate Gradient (CG) Numerical results What are the next steps ? What's the CMB ? Why is it hard ? What's map-making ?

(5)

$$N^{-1} = \begin{bmatrix} N_1^{-1} & 0 & \cdots & 0 \\ 0 & N_2^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & N_{n_{det}}^{-1} \end{bmatrix}$$

with block like this :

A few reminders on CG Enlarged CG

A few reminders on CG

Thibault Cimic Map-making problem for CMB data analysis

(日)

э

A few reminders on CG Enlarged CG

Solve $A\underline{x} = b$, $A \in \mathbb{R}^{n \times n}$ SPD, $b, \underline{x} \in \mathbb{R}^{n}$.

(日)

э

A few reminders on CG Enlarged CG

Solve $A\underline{x} = b$, $A \in \mathbb{R}^{n \times n}$ SPD, $b, \underline{x} \in \mathbb{R}^{n}$. For $x_0 \in \mathbb{R}^{n}$, build the sequence $(x_k)_{k \ge 0}$ s.t. :

$$\begin{cases} x_{k+1} \in x_0 + K_k \\ r_{k+1} := (b - Ax_{k+1}) \perp K_k \end{cases}$$
(7)

 $K_k = \text{Span}(r_0, Ar_0, ..., A^{k-1}r_0), r_0 = b - Ax_0$

伺 ト イヨ ト イヨト

A few reminders on CG Enlarged CG

Solve $A\underline{x} = b$, $A \in \mathbb{R}^{n \times n}$ SPD, $b, \underline{x} \in \mathbb{R}^{n}$. For $x_0 \in \mathbb{R}^{n}$, build the sequence $(x_k)_{k \ge 0}$ s.t. :

$$\begin{cases} x_{k+1} \in x_0 + K_k \\ r_{k+1} := (b - Ax_{k+1}) \perp K_k \end{cases}$$
(7)

$$K_k = \text{Span}(r_0, Ar_0, ..., A^{k-1}r_0), r_0 = b - Ax_0$$

Lemma

For x_k the k-th approximation build with (7), x_{k+1} satisfies :

$$||x_{k+1} - \underline{x}||_{A} = \min_{x \in x_{0} + K_{k}} ||x - \underline{x}||_{A}$$

- 4 同 ト - 4 三 ト

A few reminders on CG Enlarged CG

Building $(x_k)_{k\geq 0}$ as :

$$x_{k+1} = x_k + \alpha_k p_k \tag{8}$$

イロト イヨト イヨト イヨト

2

A few reminders on CG Enlarged CG

Building $(x_k)_{k\geq 0}$ as :

$$x_{k+1} = x_k + \alpha_k p_k \tag{8}$$

< - >

э

Several choices of $p_k \rightarrow$ several CG-algorithm

- 4 同 6 4 日 6 4 日 6

A few reminders on CG Enlarged CG

Building $(x_k)_{k\geq 0}$ as :

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k \tag{8}$$

< - >

э

Several choices of $p_k \rightarrow$ several CG-algorithm

ORTHOMIN	ORTHODIR			
$p_{k+1} = r_{k+1} + \alpha_k p_k$	$p_{k+1} = Ap_k - \gamma_k p_k - \sigma_k p_{k-1}$			
$\alpha_k = \frac{ r_{k+1} _2}{ r_k _2}$	$\gamma_k = (Ap_k)^t (Ap_k), \ \sigma_k = (Ap_{k-1})^t (Ap_k)$			

(日)

A few reminders on CG Enlarged CG

э.

A few reminders on CG Enlarged CG

Algorithm 1 Conjugate Gradient **Require:** A. b. $x_0 \in \mathbb{R}^n$, $\varepsilon > 0$ **Ensure:** $||Ax_{k+1} - b||_2 < \varepsilon ||b||_2$ k = 0 $p_0 = r_0 = Ax_0 - b$ or $p_0 = 0$, $p_1 = r_0 = Ax_0 - b$ while $||r_{k+1}|| > \varepsilon ||b||$ do $\alpha_k = ||\mathbf{r}_k||_2^2 / (\mathbf{p}_k^t A \mathbf{p}_k)$ $x_{k+1} = x_k - \alpha_k p_k$ $r_{k+1} = r_k - \alpha_k A p_k$ Build p_{k+1} with OMIN or ODIR k = k + 1end while Return x_{k+1}

・ 同 ト ・ ヨ ト ・ ヨ ト

A few reminders on CG Enlarged CG

Enlarged CG

- 4 同 6 4 日 6 4 日

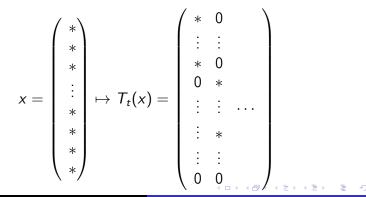
э

Introduction to the astrophysic problem Enlarged Conjugate Gradient (CG) Numerical results What are the next steps ? A few reminders on CG Enlarged CG

Define a splitting operator T_t , for $t \in \mathbb{N}$ the splitting parameter :

$$T_t: \begin{array}{c} \mathbb{R}^n \to \mathbb{R}^{n \times t} \\ x \mapsto T_t(x) \end{array}$$
(9)

with $T_t(x)$ s.t. $T_t(x) * \mathbf{1}_t = x$, $\mathbf{1}_t = (1)_{1 \le j \le t} \in \mathbb{R}^t$


(4 同) (ヨ) (ヨ)

Introduction to the astrophysic problem Enlarged Conjugate Gradient (CG) Numerical results What are the next steps ? A few reminders on CG Enlarged CG

Define a splitting operator T_t , for $t \in \mathbb{N}$ the splitting parameter :

$$T_t: \begin{array}{c} \mathbb{R}^n \to \mathbb{R}^{n \times t} \\ x \mapsto T_t(x) \end{array}$$
(9)

with $T_t(x)$ s.t. $T_t(x) * \mathbf{1}_t = x$, $\mathbf{1}_t = (1)_{1 \le j \le t} \in \mathbb{R}^t$

Thibault Cimic Map-making problem for CMB data analysis

A few reminders on CG Enlarged CG

Enlarged the Krylov subspace with T_t :

$K_{k,t} = \text{Span}_{\Box} \left(T_t(r_0), AT_t(r_0), ..., A^{k-1}T_t(r_0) \right)$ (10)

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Enlarged the Krylov subspace with T_t :

$$\mathcal{K}_{k,t} = \operatorname{Span}_{\Box} \left(T_t(r_0), AT_t(r_0), ..., A^{k-1}T_t(r_0) \right)$$
(10)

For $x_0 \in \mathbb{R}^n$, build the sequence $(x_k)_{k\geq 0}$ s.t. :

$$\begin{cases} x_{k+1} \in x_0 + K_{k,t} \\ r_{k+1} := (b - Ax_{k+1}) \perp K_{k,t} \end{cases}$$
(11)

3 > 4 3

A 10

Enlarged the Krylov subspace with T_t :

$$\mathcal{K}_{k,t} = \operatorname{Span}_{\Box} \left(T_t(r_0), AT_t(r_0), ..., A^{k-1}T_t(r_0) \right)$$
(10)

For $x_0 \in \mathbb{R}^n$, build the sequence $(x_k)_{k \geq 0}$ s.t. :

$$\begin{cases} x_{k+1} \in x_0 + K_{k,t} \\ r_{k+1} := (b - Ax_{k+1}) \perp K_{k,t} \end{cases}$$
(11)

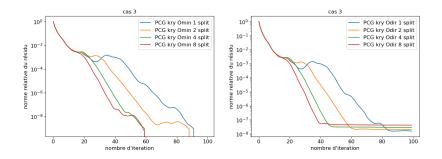
Lemma

For x_k the k-th approximation build with (11), x_{k+1} satisfies :

$$K_k \subset K_{k,t}$$

$$||x_{k+1} - \underline{x}||_A = \min_{x \in x_0 + K_{k,t}} ||x - \underline{x}||_A$$

A few reminders on CG Enlarged CG

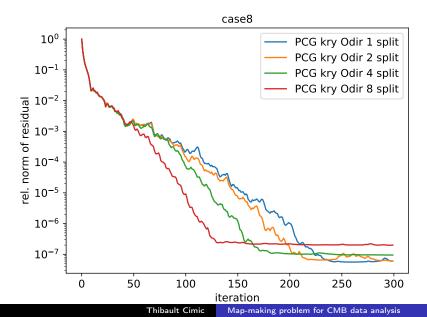

A few reminders on CG Enlarged CG

Algorithm 2 Enlarged CG **Require:** $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $x_0 \in \mathbb{R}^n$, $k_{max} \in \mathbb{N}$, $\varepsilon > 0$ **Ensure:** $||b - Ax_k||_2 < \varepsilon ||b||_2$ or $k = k_{max}$ $k = 0, p_0 = r_0 = b - Ax_0$ $X_0 = T_t(x_0), P_0 = T_t(p_0), R_0 = T_t(r_0)$ while $||r_{k+1}|| > \varepsilon ||b||$ ou $k < k_{max}$ do Change P_{k+1} s.t. $P_{k+1}^t A P_{k+1} = \mathsf{Id}$ $\alpha_k = P_{k+1}^t R_k$ $X_{k+1} = X_k + P_{k+1}\alpha_k$ $R_{k+1} = R_k - AP_{k+1}\alpha_k$ $r_{k+1} = R_{k+1} \mathbf{1}_t$ Build P_{k+1} with OMIN or ODIR k = k + 1end while Return $x_{k+1} = X_{k+1} * \mathbf{1}_{t}$

Numerical results

Thibault Cimic Map-making problem for CMB data analysis

/□ ▶ < □ ▶ < □



2

Case 3							
meth	Omin			Odir			
split	lter	time/iter	total time	iter	time/iter	total time	
1	65	28.512s	0.51h	65	26.156s	0.45h	
2	50	63.419s	0.88h	50	49.207s	0.68h	
4	39	124.642s	1.35h	39	100.946s	1.09h	
8	34	226.933s	2.14h	34	201.005s	1.89h	
32	25	874.021s	6.06h	25	779.239s	5.41h	

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ

200

What are the next steps ?

Thibault Cimic Map-making problem for CMB data analysis

Image: A marked black

• Build effective preconditioner

< 日 ▶

Image: A marked black

э

Build effective preconditioner

- $M^{-1} = P^t diag(N^{-1})^{-1}P$ works as 1st lvl preconditioner,
 - i.e. largest eigenvalue bounded by 2.

Build effective preconditioner

- M⁻¹ = P^t diag(N⁻¹)⁻¹P works as 1st lvl preconditioner, i.e. largest eigenvalue bounded by 2.
- More complex 2-lvl preconditioner from Domain Decomposition Methods (DMM) : GenEO

Build effective preconditioner

- M⁻¹ = P^t diag(N⁻¹)⁻¹P works as 1st lvl preconditioner, i.e. largest eigenvalue bounded by 2.
- More complex 2-lvl preconditioner from Domain Decomposition Methods (DMM) : GenEO
- Explore a lead to do the theory for block methods, especially Enlarged Krylov methods

伺 ト イ ヨ ト イ ヨ